Skip to main content

Leetcode 295. Find Median from Data Stream. Python

 295Find Median from Data Stream


The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.

  • For example, for arr = [2,3,4], the median is 3.
  • For example, for arr = [2,3], the median is (2 + 3) / 2 = 2.5.

Implement the MedianFinder class:

  • MedianFinder() initializes the MedianFinder object.
  • void addNum(int num) adds the integer num from the data stream to the data structure.
  • double findMedian() returns the median of all elements so far. Answers within 10-5 of the actual answer will be accepted.

 

Example 1:

Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]

Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

 

Constraints:

  • -105 <= num <= 105
  • There will be at least one element in the data structure before calling findMedian.
  • At most 5 * 104 calls will be made to addNum and findMedian.


Solution :

 class MedianFinder:

    def __init__(self):
        self.s, self.l = [], []

    def addNum(self, num: int) -> None:
        heapq.heappush(self.s, -1 * num)
        
        if self.s and self.l and (-1 * self.s[0]) > self.l[0] :
            n = -1 * heapq.heappop(self.s)
            heapq.heappush(self.l, n)
        
        if len(self.s) > len(self.l) + 1 :
            n = -1 * heapq.heappop(self.s)
            heapq.heappush(self.l, n)
        
        if len(self.l) > len(self.s) + 1 :
            n = heapq.heappop(self.l)
            heapq.heappush(self.s, -1 * n)
            
    def findMedian(self) -> float:
        if len(self.s) > len(self.l):
            return -1 * self.s[0]
        elif len(self.l) > len(self.s):
            return self.l[0]
        return (-1 * self.s[0] + self.l[0])/2

Explaination :




Comments

Popular posts from this blog

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Leetcode 217. Contains Duplicate. Python (Easiest Approach ✅)

217 .  Contains Duplicate   Given an integer array  nums , return  true  if any value appears  at least twice  in the array, and return  false  if every element is distinct.   Example 1: Input: nums = [1,2,3,1] Output: true Example 2: Input: nums = [1,2,3,4] Output: false Example 3: Input: nums = [1,1,1,3,3,4,3,2,4,2] Output: true   Constraints: 1 <= nums.length <= 10 5 -10 9  <= nums[i] <= 10 9 class Solution: def containsDuplicate(self, nums: List[int]) -> bool: hs = set() for n in nums: if n in hs: return True hs.add(n) return False Explaination :

Leetcode 322. Coin Change. Python (Greedy? vs DP?)

322 .  Coin Change You are given an integer array  coins  representing coins of different denominations and an integer  amount  representing a total amount of money. Return  the fewest number of coins that you need to make up that amount . If that amount of money cannot be made up by any combination of the coins, return  -1 . You may assume that you have an infinite number of each kind of coin.   Example 1: Input: coins = [1,2,5], amount = 11 Output: 3 Explanation: 11 = 5 + 5 + 1 Example 2: Input: coins = [2], amount = 3 Output: -1 Example 3: Input: coins = [1], amount = 0 Output: 0   Constraints: 1 <= coins.length <= 12 1 <= coins[i] <= 2 31  - 1 0 <= amount <= 10 4   Solution : class Solution:     def coinChange(self, coins: List[int], amount: int) -> int:         dp = [amount + 1] * (amount + 1) #[0...7]         dp[0] = 0        ...