Skip to main content

Codechef January Challenge 2021 Division 3 : Chef and Division 3

Chef and Division 3 | Problem Code: DIVTHREE


Question Link : https://www.codechef.com/JAN21C/problems/DIVTHREE

Video Link : https://youtu.be/ItN6GMcuqmA

Chef wants to host some Division-3 contests. Chef has N setters who are busy creating new problems for him. The ith setter has made Ai problems where 1iN.

A Division-3 contest should have exactly K problems. Chef wants to plan for the next D days using the problems that they have currently. But Chef cannot host more than one Division-3 contest in a day.

Given these constraints, can you help Chef find the maximum number of Division-3 contests that can be hosted in these D days?

Input:

  • The first line of input contains a single integer T denoting the number of test cases. The description of T test cases follows.
  • The first line of each test case contains three space-separated integers - NK and D respectively.
  • The second line of each test case contains N space-separated integers A1,A2,,AN respectively.

Output:

For each test case, print a single line containing one integer ― the maximum number of Division-3 contests Chef can host in these D days.

Constraints

  • 1T103
  • 1N102
  • 1K109
  • 1D109
  • 1Ai107 for each valid i

Subtasks

Subtask #1 (40 points):

  • N=1
  • 1A1105

Subtask #2 (60 points): Original constraints

Sample Input:

5
1 5 31
4
1 10 3
23
2 5 7
20 36
2 5 10
19 2
3 3 300
1 1 1

Sample Output:

0
2
7
4
1

Explanation:

  • Example case 1: Chef only has A1=4 problems and he needs K=5 problems for a Division-3 contest. So Chef won't be able to host any Division-3 contest in these 31 days. Hence the first output is 0.

  • Example case 2: Chef has A1=23 problems and he needs K=10 problems for a Division-3 contest. Chef can choose any 10+10=20 problems and host 2 Division-3 contests in these 3 days. Hence the second output is 2.

  • Example case 3: Chef has A1=20 problems from setter-1 and A2=36 problems from setter-2, and so has a total of 56 problems. Chef needs K=5 problems for each Division-3 contest. Hence Chef can prepare 11 Division-3 contests. But since we are planning only for the next D=7 days and Chef cannot host more than 1 contest in a day, Chef cannot host more than 7 contests. Hence the third output is 7.





#include <bits/stdc++.h>  // This will work only for g++ compiler. 
#define for0(i, n) for (int i = 0; i < (int)(n); ++i) // 0 based indexing
#define for1(i, n) for (int i = 1; i <= (int)(n); ++i) // 1 based indexing
#define forc(i, l, r) for (int i = (int)(l); i <= (int)(r); ++i) // closed interver from l to r r inclusive
#define forr0(i, n) for (int i = (int)(n) - 1; i >= 0; --i) // reverse 0 based.
#define forr1(i, n) for (int i = (int)(n); i >= 1; --i) // reverse 1 based

//short hand for usual tokens
#define pb push_back
#define fi first
#define se second

// to be used with algorithms that processes a container Eg: find(all(c),42)
#define all(x) (x).begin(), (x).end() //Forward traversal
#define rall(x) (x).rbegin, (x).rend() //reverse traversal

// traversal function to avoid long template definition. Now with C++11 auto alleviates the pain.
#define tr(c,i) for(__typeof__((c)).begin() i = (c).begin(); i != (c).end(); i++)

// find if a given value is present in a container. Container version. Runs in log(n) for set and map
#define present(c,x) ((c).find(x) != (c).end())

//find version works for all containers. This is present in std namespace.
#define cpresent(c,x) (find(all(c),x) != (c).end())

// Avoiding wrap around of size()-1 where size is a unsigned int.
#define sz(a) int((a).size())

#define LL long long
using namespace std;

// Shorthand for commonly used types
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int, int> ii;
typedef vector<ii> vii;
typedef long long ll;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef double ld;


int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    LL int n,t,k,d,a[100000],sum;
    cin>>t;
    while(t){
        cin>>n>>k>>d;
        for0(i, n) cin>>a[i];
        for0(i, n) sum+=a[i];
        int j =sum/k;
        if(j>=d) cout<<d<<"\n";
        else cout<<j<<"\n";
        sum=0;
        t--;
    }
    return 0;
}


Comments

Popular posts from this blog

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Number of Connected Components in an Undirected Graph (Python)

66.  Number of Connected Components in an Undirected Graph Question Link :  check here Givennnodes labeled from0ton - 1and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph. Example 1:      0          3      |          |      1 --- 2    4 Givenn = 5andedges = [[0, 1], [1, 2], [3, 4]], return2. Example 2:      0           4      |           |      1 --- 2 --- 3 Givenn = 5andedges = [[0, 1], [1, 2], [2, 3], [3, 4]], return1. Note: You can assume that no duplicate edges will appear inedges. Since all edges are undirected,[0, 1]is the same as[1, 0]and thus will not appear together inedges. Solution : class Solution: def counComponents(self, n: int, edges : List[List[int]]) -> i...

Leetcode 347. Top K Frequent Elements. Python (Bubble Sort)

Top K Frequent Elements Given an integer array  nums  and an integer  k , return  the   k   most frequent elements . You may return the answer in  any order .   Example 1: Input: nums = [1,1,1,2,2,3], k = 2 Output: [1,2] Example 2: Input: nums = [1], k = 1 Output: [1]   Constraints: 1 <= nums.length <= 10 5 -10 4  <= nums[i] <= 10 4 k  is in the range  [1, the number of unique elements in the array] . It is  guaranteed  that the answer is  unique .   Follow up:  Your algorithm's time complexity must be better than  O(n log n) , where n is the array's size. Solution : class Solution:     def topKFrequent(self, n: List[int], k: int) -> List[int]:                  # [1,1,1,2,2,3] &  k = 2                  f = [[] for i in range(len(n) + 1)]         # f = [...