Skip to main content

Leetcode 347. Top K Frequent Elements. Python (Bubble Sort)

Top K Frequent Elements


Given an integer array nums and an integer k, return the k most frequent elements. You may return the answer in any order.

 

Example 1:

Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]

Example 2:

Input: nums = [1], k = 1
Output: [1]

 

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104
  • k is in the range [1, the number of unique elements in the array].
  • It is guaranteed that the answer is unique.

 

Follow up: Your algorithm's time complexity must be better than O(n log n), where n is the array's size.


Solution :

class Solution:

    def topKFrequent(self, n: List[int], k: int) -> List[int]:

        

        # [1,1,1,2,2,3] &  k = 2

        

        f = [[] for i in range(len(n) + 1)]

        # f = [[], [3], [2], [1], [], [], []]


        cnt = {}

        ans = []

        

        

        for i in n :

            cnt[i] = 1 +  cnt.get(i,0)

        

        for i,j in cnt.items():

            f[j].append(i)

            

        for i in range(len(f) - 1, 0, -1):

            for j in f[i] :

                ans.append(j)

            

            if len(ans) == k:

                return ans

            


Explaination :




Comments

Popular posts from this blog

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Leetcode 338. Counting Bits. Python (Bubble Sort)

Given an integer  n , return  an array  ans  of length  n + 1  such that for each  i   ( 0 <= i <= n ) ,  ans[i]  is the  number of  1 's  in the binary representation of  i .   Example 1: Input: n = 2 Output: [0,1,1] Explanation: 0 --> 0 1 --> 1 2 --> 10 Example 2: Input: n = 5 Output: [0,1,1,2,1,2] Explanation: 0 --> 0 1 --> 1 2 --> 10 3 --> 11 4 --> 100 5 --> 101   Constraints: 0 <= n <= 10 5   Follow up: It is very easy to come up with a solution with a runtime of  O(n log n) . Can you do it in linear time  O(n)  and possibly in a single pass? Can you do it without using any built-in function (i.e., like  __builtin_popcount  in C++)?   Solution : class Solution:     def countBits(self, n: int) -> List[int]:         dp = [0] * (n+1)         c = 1        ...