Skip to main content

Decode Ways II

 Decode Ways II





A message containing letters from A-Z can be encoded into numbers using the following mapping:

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"
To decode an encoded message, all the digits must be grouped then mapped back into letters using the reverse of the mapping above (there may be multiple ways). For example, "11106" can be mapped into:

"AAJF" with the grouping (1 1 10 6)
"KJF" with the grouping (11 10 6)
Note that the grouping (1 11 06) is invalid because "06" cannot be mapped into 'F' since "6" is different from "06".

In addition to the mapping above, an encoded message may contain the '*' character, which can represent any digit from '1' to '9' ('0' is excluded). For example, the encoded message "1*" may represent any of the encoded messages "11", "12", "13", "14", "15", "16", "17", "18", or "19". Decoding "1*" is equivalent to decoding any of the encoded messages it can represent.

Given a string s containing digits and the '*' character, return the number of ways to decode it.

Since the answer may be very large, return it modulo 109 + 7.

 

Example 1:

Input: s = "*"
Output: 9
Explanation: The encoded message can represent any of the encoded messages "1", "2", "3", "4", "5", "6", "7", "8", or "9".
Each of these can be decoded to the strings "A", "B", "C", "D", "E", "F", "G", "H", and "I" respectively.
Hence, there are a total of 9 ways to decode "*".
Example 2:

Input: s = "1*"
Output: 18
Explanation: The encoded message can represent any of the encoded messages "11", "12", "13", "14", "15", "16", "17", "18", or "19".
Each of these encoded messages have 2 ways to be decoded (e.g. "11" can be decoded to "AA" or "K").
Hence, there are a total of 9 * 2 = 18 ways to decode "1*".
Example 3:

Input: s = "2*"
Output: 15
Explanation: The encoded message can represent any of the encoded messages "21", "22", "23", "24", "25", "26", "27", "28", or "29".
"21", "22", "23", "24", "25", and "26" have 2 ways of being decoded, but "27", "28", and "29" only have 1 way.
Hence, there are a total of (6 * 2) + (3 * 1) = 12 + 3 = 15 ways to decode "2*".
 

Constraints:

1 <= s.length <= 105
s[i] is a digit or '*'.


Solution :

class Solution {
public:
    int numDecodings(string s) {
        long e0 = 1, e1 = 0, e2 = 0, f0, f1, f2;
        for ( char c : s ) {
            if ( '*' == c ) {
                f0 = 9 * e0 + 9 * e1 + 6 * e2;
                f1 = f2 = e0;
            } else {
                f0 = int(c > '0') * e0 + e1 + int(c < '7') * e2;
                f1 = '1' == c ? e0 : 0;
                f2 = '2' == c ? e0 : 0;
            }
            e0 = f0 % 1000000007;
            e1 = f1;
            e2 = f2;
        }
        return int(e0);
    }
};

Comments

Popular posts from this blog

Leetcode 217. Contains Duplicate. Python (Easiest Approach ✅)

217 .  Contains Duplicate   Given an integer array  nums , return  true  if any value appears  at least twice  in the array, and return  false  if every element is distinct.   Example 1: Input: nums = [1,2,3,1] Output: true Example 2: Input: nums = [1,2,3,4] Output: false Example 3: Input: nums = [1,1,1,3,3,4,3,2,4,2] Output: true   Constraints: 1 <= nums.length <= 10 5 -10 9  <= nums[i] <= 10 9 class Solution: def containsDuplicate(self, nums: List[int]) -> bool: hs = set() for n in nums: if n in hs: return True hs.add(n) return False Explaination :

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Leetcode 322. Coin Change. Python (Greedy? vs DP?)

322 .  Coin Change You are given an integer array  coins  representing coins of different denominations and an integer  amount  representing a total amount of money. Return  the fewest number of coins that you need to make up that amount . If that amount of money cannot be made up by any combination of the coins, return  -1 . You may assume that you have an infinite number of each kind of coin.   Example 1: Input: coins = [1,2,5], amount = 11 Output: 3 Explanation: 11 = 5 + 5 + 1 Example 2: Input: coins = [2], amount = 3 Output: -1 Example 3: Input: coins = [1], amount = 0 Output: 0   Constraints: 1 <= coins.length <= 12 1 <= coins[i] <= 2 31  - 1 0 <= amount <= 10 4   Solution : class Solution:     def coinChange(self, coins: List[int], amount: int) -> int:         dp = [amount + 1] * (amount + 1) #[0...7]         dp[0] = 0        ...