Skip to main content

Longest Increasing Subsequence

Longest Increasing Subsequence


Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].



Example 1:


Input: nums = [10,9,2,5,3,7,101,18]

Output: 4

Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2:


Input: nums = [0,1,0,3,2,3]

Output: 4

Example 3:


Input: nums = [7,7,7,7,7,7,7]

Output: 1

 


Constraints:


1 <= nums.length <= 2500

-104 <= nums[i] <= 104

 


Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity? 


Solution :


C++ :


class Solution {
public:
    // There's a typical DP solution with O(N^2) Time and O(N) space 
    // DP[i] means the result ends at i
    // So for dp[i], dp[i] is max(dp[j]+1), for all j < i and nums[j] < nums[i]
    int lengthOfLIS(vector<int>& nums) {
        const int size = nums.size();
        if (size == 0) { return 0; } 
        vector<int> dp(size, 1);
        int res = 1;
        for (int i = 1; i < size; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    dp[i] = max(dp[i], dp[j]+1);
                }
            }
            res = max (res, dp[i]);
        }
        return res;
    }
};


PYTHON :

def lengthOfLIS(self, nums):
    tails = [0] * len(nums)
    size = 0
    for x in nums:
        i, j = 0, size
        while i != j:
            m = (i + j) / 2
            if tails[m] < x:
                i = m + 1
            else:
                j = m
        tails[i] = x
        size = max(i + 1, size)
    return size

Comments

Popular posts from this blog

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Leetcode 347. Top K Frequent Elements. Python (Bubble Sort)

Top K Frequent Elements Given an integer array  nums  and an integer  k , return  the   k   most frequent elements . You may return the answer in  any order .   Example 1: Input: nums = [1,1,1,2,2,3], k = 2 Output: [1,2] Example 2: Input: nums = [1], k = 1 Output: [1]   Constraints: 1 <= nums.length <= 10 5 -10 4  <= nums[i] <= 10 4 k  is in the range  [1, the number of unique elements in the array] . It is  guaranteed  that the answer is  unique .   Follow up:  Your algorithm's time complexity must be better than  O(n log n) , where n is the array's size. Solution : class Solution:     def topKFrequent(self, n: List[int], k: int) -> List[int]:                  # [1,1,1,2,2,3] &  k = 2                  f = [[] for i in range(len(n) + 1)]         # f = [...

Leetcode 338. Counting Bits. Python (Bubble Sort)

Given an integer  n , return  an array  ans  of length  n + 1  such that for each  i   ( 0 <= i <= n ) ,  ans[i]  is the  number of  1 's  in the binary representation of  i .   Example 1: Input: n = 2 Output: [0,1,1] Explanation: 0 --> 0 1 --> 1 2 --> 10 Example 2: Input: n = 5 Output: [0,1,1,2,1,2] Explanation: 0 --> 0 1 --> 1 2 --> 10 3 --> 11 4 --> 100 5 --> 101   Constraints: 0 <= n <= 10 5   Follow up: It is very easy to come up with a solution with a runtime of  O(n log n) . Can you do it in linear time  O(n)  and possibly in a single pass? Can you do it without using any built-in function (i.e., like  __builtin_popcount  in C++)?   Solution : class Solution:     def countBits(self, n: int) -> List[int]:         dp = [0] * (n+1)         c = 1        ...