Skip to main content

Encoded String Codechef January Challenge 2021

 Encoded String Problem Code: DECODEIT




An encoder encodes the first 16 lowercase English letters using 4 bits each. The first bit (from the left) of the code is 0 if the letter lies among the first 8 letters, else it is 1, signifying that it lies among the last 8 letters. The second bit of the code is 0 if the letter lies among the first 4 letters of those 8 letters found in the previous step, else it's 1, signifying that it lies among the last 4 letters of those 8 letters. Similarly, the third and the fourth bit each signify the half in which the letter lies.

For example, the letter j would be encoded as :

  • Among (a,b,c,d,e,f,g,h | i,j,k,l,m,n,o,p)j appears in the second half. So the first bit of its encoding is 1.
  • Now, among (i,j,k,l | m,n,o,p)j appears in the first half. So the second bit of its encoding is 0.
  • Now, among (i,j | k,l)j appears in the first half. So the third bit of its encoding is 0.
  • Now, among (i | j)j appears in the second half. So the fourth and last bit of its encoding is 1.

So j's encoding is 1001,

Given a binary encoded string S, of length at most 105, decode the string. That is, the first 4 bits are the encoding of the first letter of the secret message, the next 4 bits encode the second letter, and so on. It is guaranteed that the string's length is a multiple of 4.

Input:

  • The first line of the input contains an integer T, denoting the number of test cases.
  • The first line of each test case contains an integer N, the length of the encoded string.
  • The second line of each test case contains the encoded string S.

Output:

For each test case, print the decoded string, in a separate line.

Constraints

  • 1T10
  • 4N105
  • The length of the encoded string is a multiple of 4.
  • 0Si1

Subtasks

  • 100 points : Original constraints.

Sample Input:

3
4
0000
8
00001111
4
1001

Sample Output:

a
ap
j

Explanation:

  • Sample Case 1 :

The first bit is 0, so the letter lies among the first 8 letters, i.e., among a,b,c,d,e,f,g,h. The second bit is 0, so it lies among the first four of these, i.e., among a,b,c,d.

The third bit is 0, so it again lies in the first half, i.e., it's either a or b. Finally, the fourth bit is also 0, so we know that the letter is a.

  • Sample Case 2 :

Each four bits correspond to a character. Just like in sample case 10000 is equivalent to a. Similarly, 1111 is equivalent to p. So, the decoded string is ap.

  • Sample Case 3 :

The first bit is 1, so the letter lies among the last 8 letters, i.e., among i,j,k,l,m,n,o,p. The second bit is 0, so it lies among the first four of these, i.e., among i,j,k,l.

The third bit is 0, so it again lies in the first half, i.e., it's either i or j. Finally, the fourth bit is 1, so we know that the letter is j.


Encoded String Solution in C++ :


#include<bits/stdc++.h>
#define ll long long 
#include<string>
using namespace std;

void solve()
{
    ll int n;
    cin>>n;
    string temp,ans="";
    char s[n];
    for(ll int i=0;i<n;i++)
    {
        cin>>s[i];
    }
    for(ll int i=0;i<n;i+=4)
    {
        temp="";
        temp+=s[i];
        temp+=s[i+1];
        temp+=s[i+2];
        temp+=s[i+3];
        if(temp=="0000") ans+="a";
        else if(temp=="0001") ans+="b";
        else if(temp=="0010") ans+="c";
        else if(temp=="0011") ans+="d";
        else if(temp=="0100") ans+="e";
        else if(temp=="0101") ans+="f";
        else if(temp=="0110") ans+="g";
        else if(temp=="0111") ans+="h";
        else if(temp=="1000") ans+="i";
        else if(temp=="1001") ans+="j";
        else if(temp=="1010") ans+="k";
        else if(temp=="1011") ans+="l";
        else if(temp=="1100") ans+="m";
        else if(temp=="1101") ans+="n";
        else if(temp=="1110") ans+="o";
        else if(temp=="1111") ans+="p";
    }
    cout<<ans<<"\n";
}

int main()
{
    ll t;   cin>>t;     while(t--)
    {
        solve();
    }
}




Encoded String For Solution in C : Checkout Here (Actual Logic)




Comments

Popular posts from this blog

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Leetcode 338. Counting Bits. Python (Bubble Sort)

Given an integer  n , return  an array  ans  of length  n + 1  such that for each  i   ( 0 <= i <= n ) ,  ans[i]  is the  number of  1 's  in the binary representation of  i .   Example 1: Input: n = 2 Output: [0,1,1] Explanation: 0 --> 0 1 --> 1 2 --> 10 Example 2: Input: n = 5 Output: [0,1,1,2,1,2] Explanation: 0 --> 0 1 --> 1 2 --> 10 3 --> 11 4 --> 100 5 --> 101   Constraints: 0 <= n <= 10 5   Follow up: It is very easy to come up with a solution with a runtime of  O(n log n) . Can you do it in linear time  O(n)  and possibly in a single pass? Can you do it without using any built-in function (i.e., like  __builtin_popcount  in C++)?   Solution : class Solution:     def countBits(self, n: int) -> List[int]:         dp = [0] * (n+1)         c = 1        ...

Number of Connected Components in an Undirected Graph (Python)

66.  Number of Connected Components in an Undirected Graph Question Link :  check here Givennnodes labeled from0ton - 1and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph. Example 1:      0          3      |          |      1 --- 2    4 Givenn = 5andedges = [[0, 1], [1, 2], [3, 4]], return2. Example 2:      0           4      |           |      1 --- 2 --- 3 Givenn = 5andedges = [[0, 1], [1, 2], [2, 3], [3, 4]], return1. Note: You can assume that no duplicate edges will appear inedges. Since all edges are undirected,[0, 1]is the same as[1, 0]and thus will not appear together inedges. Solution : class Solution: def counComponents(self, n: int, edges : List[List[int]]) -> i...