Skip to main content

MAY-27 2020 Challenge

Possible Bipartition


Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of any size.

Each person may dislike some other people, and they should not go into the same group.

Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.

Return true if and only if it is possible to split everyone into two groups in this way.

 Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false

Note:
  1. 1 <= N <= 2000
  2. 0 <= dislikes.length <= 10000
  3. 1 <= dislikes[i][j] <= N
  4. dislikes[i][0] < dislikes[i][1]
  5. There does not exist i != j for which dislikes[i] == dislikes[j].


Solution in C++:

class Solution {
public:
    bool possibleBipartition(int N, vector<vector<int>>& dislikes) {
      g_ = vector<vector<int>>(N);
      for (const auto& d : dislikes) {
        g_[d[0] - 1].push_back(d[1] - 1);
        g_[d[1] - 1].push_back(d[0] - 1);
      }
      colors_ = vector<int>(N, 0);  // 0: unknown, 1: red, -1: blue
      for (int i = 0; i < N; ++i)
        if (colors_[i] == 0 && !dfs(i, 1)) return false;
      return true;      
    }
private:
  vector<vector<int>> g_;
  vector<int> colors_;
  bool dfs(int cur, int color) {
    colors_[cur] = color;
    for (int nxt : g_[cur]) {
      if (colors_[nxt] == color) return false;      
      if (colors_[nxt] == 0 && !dfs(nxt, -color)) return false;
    }
    return true;
  }
};
  

MAY-27 2020 Challenge
  

Comments

Popular posts from this blog

Leetcode 371. Sum of Two Integers. C++ / Java

371 .  Sum of Two Integers   Given two integers  a  and  b , return  the sum of the two integers without using the operators   +   and   - .   Example 1: Input: a = 1, b = 2 Output: 3 Example 2: Input: a = 2, b = 3 Output: 5   Constraints: -1000 <= a, b <= 1000 Solution :  C++ : class Solution { public: int getSum(int a, int b) { if (b==0) return a; int sum = a ^ b; int cr = (unsigned int) (a & b) << 1; return getSum(sum, cr); } }; Java :  class Solution { public int getSum(int a, int b) { while(b != 0){ int tmp = (a & b) << 1; a = a ^ b; b = tmp; } return a; } } Explaination :

Leetcode 217. Contains Duplicate. Python (Easiest Approach ✅)

217 .  Contains Duplicate   Given an integer array  nums , return  true  if any value appears  at least twice  in the array, and return  false  if every element is distinct.   Example 1: Input: nums = [1,2,3,1] Output: true Example 2: Input: nums = [1,2,3,4] Output: false Example 3: Input: nums = [1,1,1,3,3,4,3,2,4,2] Output: true   Constraints: 1 <= nums.length <= 10 5 -10 9  <= nums[i] <= 10 9 class Solution: def containsDuplicate(self, nums: List[int]) -> bool: hs = set() for n in nums: if n in hs: return True hs.add(n) return False Explaination :

Number of Connected Components in an Undirected Graph (Python)

66.  Number of Connected Components in an Undirected Graph Question Link :  check here Givennnodes labeled from0ton - 1and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph. Example 1:      0          3      |          |      1 --- 2    4 Givenn = 5andedges = [[0, 1], [1, 2], [3, 4]], return2. Example 2:      0           4      |           |      1 --- 2 --- 3 Givenn = 5andedges = [[0, 1], [1, 2], [2, 3], [3, 4]], return1. Note: You can assume that no duplicate edges will appear inedges. Since all edges are undirected,[0, 1]is the same as[1, 0]and thus will not appear together inedges. Solution : class Solution: def counComponents(self, n: int, edges : List[List[int]]) -> i...